Skeletal muscle mitochondrial DNA content in exercising humans.

نویسندگان

  • A Marcuello
  • J González-Alonso
  • J A L Calbet
  • R Damsgaard
  • M J López-Pérez
  • C Díez-Sánchez
چکیده

Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; approximately 60% maximal oxygen consumption (Vo(2 max))] and short repeated high-intensity exercise (5-8 min; approximately 110% Vo(2 max)). In control resting and light exercise (2 h; approximately 25% Vo(2 max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 h of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of exercise on mitochondrial DNA content in skeletal muscle of patients with COPD.

BACKGROUND Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. OBJECTIVE To investigate the effects of exercise above and below th...

متن کامل

Decline in skeletal muscle mitochondrial function with aging in humans.

Cumulative mtDNA damage occurs in aging animals, and mtDNA mutations are reported to accelerate aging in mice. We determined whether aging results in increased DNA oxidative damage and reduced mtDNA abundance and mitochondrial function in skeletal muscle of human subjects. Studies performed in 146 healthy men and women aged 18-89 yr demonstrated that mtDNA and mRNA abundance and mitochondrial A...

متن کامل

The Relationship between Muscle Fiber Type-Specific PGC-1α Content and Mitochondrial Content Varies between Rodent Models and Humans

PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are pr...

متن کامل

Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.

Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rh...

متن کامل

PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle.

Endurance training leads to many adaptational changes in several tissues. In skeletal muscle, fatty acid usage is enhanced and mitochondrial content is increased. The exact molecular mechanisms regulating these functional and structural changes remain to be elucidated. Contractile activity-induced metabolic perturbation has repeatedly been shown to be important for the induction of mitochondria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 4  شماره 

صفحات  -

تاریخ انتشار 2005